Самый большой ледокол в мире: фото, размеры. Атомный ключ к арктике Чем отличается ледокол от обычного корабля

Во время своей поездки в мурманск,я как и все посетил атомный ледокол Ленин.Поэтому буду в своей многофоточной манере описывать данное транспортное средство:-)))


Ледокол Ленин - трехвинтовое судно. По архитектурному типу он представляет собой гладкопалубное судно с умеренной седловатостью, четырьмя непрерывными палубами, удлиненной надстройкой и двумя мачтами. В кормовой части шлюпочной палубы имеется взлетно-посадочная площадка и ангар для вертолета. Дымовая труба отсутствует.

Необычно большие размеры грот-мачты обусловлены ее использованием для вентиляции парогенераторной установки.

Применение атомной энергии определило особенности внутреннего расположения энергетических, жилых и служебных помещений судна. Корпус ледокола разбит главными поперечными водонепроницаемыми переборками на двенадцать отсеков.

Две продольные переборки, идущие от второго дна до верхней палубы, образуют по бортам отсеки, в которых размещены главным образом балластные, топливные и другие цистерны, выше нижней палубы - различные кладовые, служебные помещения и каюты команды.

Корпус ледокола Ленин по конструкции значительно отличается от других ледоколов отечественной постройки. Днище, борта, внутренние палубы, платформы и верхняя палуба в оконечностях набраны по поперечной системе, а верхняя палуба в средней части - по продольной.

Размер шпации 800 мм. Промежуточные шпангоуты установлены по всей длине судна от второго дна до жилой палубы. Набор носовой и кормовой оконечностей веерный; шпангоуты в этих районах расположены нормально к обшивке.

Наружная обшивка в районе ледового пояса и прилежащие поясья выше и ниже его выполнены из стали повышенной прочности. Толщина ледового пояса 36 мм в средней части, 52 мм - в носовой и 44 мм - в кормовой оконечности.

Форштевень и ахтерштевень ледокола - лито-сварные. Общий вес форштевня 30 т, а ахтерштевня - 86 т. Руль ледокола сварной, имеет обшивку из листовой стали толщиной 40 мм. Площадь пера руля 18,5 м2. Баллер кованый из легированной стали диаметром 550 мм.

Команда ледокола размещается в одно - и двухместных каютах. Для жилых, культурно-бытовых и медицинских помещений на ледоколе использовано водяное отопление с кондиционированием воздуха.

В машинном отделении и вспомогательных помещениях отопление паровое. Предусмотрены мощная холодильная автоматическая установка и большое количество провизионных кладовых.

Грузовыми средствами на ледоколе служат: в носу - две грузовые стрелы с электролебедками грузоподъемностью по 1,5 тс,

в средней части - кран грузоподъемностью 12 тс для обслуживания отсека атомной установки;

в корме - два крана грузоподъемностью по 3 тс.

Ледокол снабжен тремя становыми якорями (один из них запасной) с поворотными лапами весом по 6 т каждый, стоп-анкером весом 2 т и четырьмя ледовыми якорями (два по 150 кг и два по 100 кг). Становые якоря убираются в клюзы заподлицо с обшивкой. Литые якорные цепи калибра 67 мм имеют длину 325 м.

В корме предусмотрен вырез для буксировки судов вплотную, который снабжен привальными брусьями и кранцами, облицованными резиной. Автоматическая двухбарабанная буксирная лебедка с тяговым усилием 40 тс на главном барабане и 25 тс на вспомогательном установлена в кормовой оконечности.

Электрогидравлическая рулевая машина осуществляет перекладку руля с борта на борт за 30 сек при скорости хода судна 18 уз и работе одного из двух установленных насосов. Непотопляемость ледокола обеспечивается при одновременном затоплении двух главных водонепроницаемых отсеков.

Ледокол имеет две спасательные шлюпки на 58 человек каждая, две спасательные моторные шлюпки на 40 человек каждая, два шестивесельных яла, разъездной и буксирный катера. Спуск и подъем спасательных шлюпок и катеров осуществляется с помощью шлюпбалок скатывающегося типа.

Энергетическая установка ледокола работает по следующей схеме. Выделяемое в реакторе тепло используется для получения перегретого пара в парогенераторах. Пар направляется к главным турбогенераторам, от которых электроэнергия подается на гребные электродвигатели.

Якоря гребных электродвигателей соединены с гребными валами. Парогенераторы получают питание от параллельно работающих питательных насосов, так что в случае аварийной остановки одного из насосов остальные автоматически увеличивают производительность до необходимого уровня. Управляют всей энергетической установкой ледокола с одного поста.

Биологическая защита атомной установки гарантирует защиту экипажа ледокола от действия радиоактивных излучений, которые контролируются специальной дозиметрической системой. Пульт управления этой системы расположен в посту радиационного контроля.

Главные турбогенераторы расположены в двух отделениях: носовом и кормовом. В каждом отделении установлены две турбины активно-реактивного типа мощностью по 11 000 л.с. Каждая турбина через редуктор соединена с двумя двухъякорными генераторами постоянного тока длительной мощностью 11 500 л.с. при номинальном напряжении 600 В.

Турбогенераторные агрегаты питают три гребных двухъякорных электродвигателя постоянного тока: средний и два бортовых. На средний двигатель подается 50% мощности, вырабатываемой турбогенераторами, а на бортовые - по 25%. Мощность среднего электродвигателя - 19 600 л.с, а бортовых - по 9800 л.с. Гребные валы ледокола выполнены из легированной стали. Диаметр среднего вала 740 мм, длина 9,2 м, вес 26,8 т; диаметр бортового вала 712 мм, длина 18,4 м, вес 45 т.

Гребные винты четырехлопастные, со съемными лопастями. Вес среднего винта составляет 27,8 т, бортового - 22,5 т.

На ледоколе имеются носовая и кормовая электростанции. В носовой установлены три турбогенератора, в кормовой - два турбогенератора и один резервный дизель-генератор мощностью по 1000 кВт каждый. Каждый турбогенератор состоит из конденсационной паровой турбины активного типа и генератора переменного тока. Кроме того, на судне предусмотрены два аварийных дизель-генератора.

Проект атомохода был разработан в ЦКБ-15 (ныне «Айсберг») в 1953-1955 годах (проект № 92) после принятия решения о строительстве атомного ледокола 20 ноября 1953 Советом министров СССР. Главным конструктором был В. И. Неганов. Атомная установка проектировалась под руководством И. И. Африкантова. Корпусная сталь марок АК-27 и АК-28 (почти «нержавейка») была специально разработана в институте «Прометей» для ледоколов.

Судно было заложено В 1956 на судостроительном заводе им. А.Марти в Ленинграде. Главный строитель - В. И. Червяков.

Спущен на воду 5 декабря 1957 года. 12 сентября 1959 года уже с верфи Адмиралтейского завода отправился на ходовые испытания под командованием П. А. Пономарева

3 декабря 1959 года сдан Министерству морского флота. С 1960 года в составе Мурманского морского пароходства.

Обладал хорошей ледопроходимостью. Только за первые 6 лет эксплуатации ледокол прошел свыше 82 тысяч морских миль и самостоятельно провел более 400 судов.

Ледокол «Ленин» проработал 30 лет и в 1989 был выведен из эксплуатации и поставлен на вечную стоянку в Мурманске.

Теперь двинемся вовнутрь.Вход бесплатный,а у входа уже развилась группа учащихся местной мореходки.

Атомоход стоит у понтонного причала мурманского морского порта.

Рядом пришвартована "Клавдия Еланская"

На ней осуществляются местные перевозки.

Вдали виден атомный ледокол "Россия",если я не ошибаюсь.

С другого бока пришвартованы такие яхточки.

Памятники на противоположном берегу бухты.

Время 12 часов: вперед...

Переходим с трапа на борт.

В следующих частях мы посмотрим,что у него внутри и подробно разглядим рубку.


Я понимаю,что это все является масштабным повторением огромного количества фотографий людей посетивших на экскурсиях корабль,тем более,что водят по одним и тем же местам.Но мне было интересно самому в этом разобраться.

Это наш гид по атомоходу:

Речь шла о создании такого судна, которое очень долго может плавать без захода в порты за топливом.
Ученые подсчитали, что атомный ледокол будет расходовать в сутки 45 граммов ядерного горючего - столько, сколько уместится в спичечной коробке. Вот почему атомоход, практически имея неограниченный район плавания, сможет побывать за один рейс и в Арктике, и у берегов Антарктиды. Для судна с атомной энергетической установкой дальность расстояния - не препятствие.

Первоначально нас собрали в этом зале для кратенького введения в экскурсию и разделили на две группы.

Адмиралтейцы имели немалый опыт по ремонту и строительству ледоколов. Еще в 1928 г. они капитально отремонтировали "дедушку ледокольного флота" - знаменитый "Ермак".
Строительство ледоколов и ледокольно-транспортных судов на заводе было связано с новым этапом в развитии советского судостроения - применением электросварки вместо клепки. Коллектив завода был одним из инициаторов этого новшества. Новый метод успешно испытали на строительстве ледоколов типа "Седов". Ледоколы "Охотск", "Мурман", "Океан", при постройке которых широко применялась электросварка, показали прекрасные эксплуатационные качества; их корпус оказался более прочным по сравнению с другими судами.

Перед Великой Отечественной войной на заводе построили крупное ледокольно-транспортное судно "Семен Дежнев", которое сразу же после ходовых испытаний направилось в Арктику для вывода зазимовавших там караванов. Вслед за "Семеном Дежневым" было спущено на воду ледокольно-транспортное судно "Леваневский". После войны завод построил еще один ледокол и несколько самоходных паромов ледокольного типа.
Над проектом трудился большой научный коллектив, возглавляемый выдающимся советским физиком академиком А. П. Александровым. Под его руководством работали такие крупные специалисты как И. И. Африкантов, А. И. Брандаус, Г. А. Гладков, Б. Я. Гнесин, В. И. Неганов, Н. С. Хлопкин, А. Н. Стефанович и Другие.

Поднимаемся на этаж выше

Размеры атомохода были выбраны с учетом требований эксплуатации ледоколов на Севере и обеспечения его наилучших мореходных качеств: длина ледокола 134 м, ширина 27,6 м, мощность на валу 44 000 л. с., водоизмещение 16000 т, скорость хода 18 узлов на чистой воде и 2 узла во льдах толщиной более 2 м.

Длинные коридоры

Запроектированная мощность турбоэлектрической установки не имеет себе равных. Атомный ледокол по своей мощности в два раза превосходит американский ледокол "Глетчер", считавшийся крупнейшим в мире.
Особое внимание при проектировании корпуса судна было обращено на форму носовой оконечности, от которой во многом зависят ледокольные качества судна. Выбранные для атомохода обводы по сравнению с существующими ледоколами позволяют увеличить давление на лед. Кормовая оконечность спроектирована так, что обеспечивает проходимость во льдах при заднем ходе и надежную защиту винтов и руля от ударов льда.

Столовая:
А камбуз? Это полностью электрифицированный комбинат со своей хлебопекарней,горячая пища на электрическом лифте подается из кухни в столовые.

В практике наблюдалось, что ледоколы иногда застревали во льдах не только носом или кормой, но и бортами. Чтобы избежать этого, было решено устроить на атомоходе специальные системы балластных цистерн. Если из цистерны одного борта перекачать воду в цистерну другого борта, то судно, раскачиваясь из стороны в сторону, будет ломать и раздвигать лед бортами. Такая же система цистерн установлена в носу и в корме. А если ледокол не сломает лед с ходу и нос его застрянет? Тогда можно перекачать воду из кормовой дифферентной цистерны в носовую. Давление на лед увеличится, он сломается, и ледокол выйдет из ледового плена.
Чтобы обеспечить непотопляемость такого большого судна, в случае если обшивка будет повреждена, корпус решили подразделить на отсеки одиннадцатью главными поперечными водонепроницаемыми переборками. При расчете атомного ледокола конструкторы обеспечили непотопляемость судна при затоплении двух наибольших отсеков.

Коллектив строителей полярного гиганта возглавил талантливый инженер В. И. Червяков.

В июле 1956 г. была заложена первая секция корпуса атомного ледокола.
Для разбивки на плазе теоретического чертежа корпуса требовалась огромная площадь - около 2500 квадратных метров. Вместо этого разбивку произвели на особом щите с помощью специального инструмента. Это позволило сократить площадь для разметки. Затем изготавливались чертежи-шаблоны, которые фотографировались на фотопластинки. Проекционный аппарат, в который помещали негатив, воспроизводил на металле световой контур детали. Фотооптический метод разметки позволил снизить трудоемкость плазовых и разметочных работ на 40%.

Попадаем в машинный отсек

Атомный ледокол как наиболее мощное судно во всем ледокольном флоте предназначен для борьбы со льдами в самых тяжелых условиях; поэтому его корпус должен быть особенно прочным. Высокую прочность корпуса решено было обеспечить применением стали новой марки. Эта сталь обладает повышенной ударной вязкостью. Она хорошо сваривается и имеет большую сопротивляемость распространению трещин при низких температурах.

Конструкция корпуса атомохода, система его набора также отличалась от других ледоколов. Днище, борта, внутренние палубы, платформы и верхняя палуба в оконечностях набирались по поперечной системе набора, а верхняя палуба в средней части ледокола - по продольной системе.
Корпус высотой в добрый пятиэтажный дом состоял из секций весом до 75 т. Таких крупных секций насчитывалось около двухсот.

Сборку и сварку таких секций вел участок предварительной сборки корпусного цеха.

Интересно отметить, что на атомоходе имеются две электростанции, способные обеспечить энергией город с 300-тысячным населением. На судне не нужны ни машинисты, ни кочегары: вся работа электростанций автоматизирована.
Следует сказать о новейших электродвигателях гребных винтов. Это- уникальные машины, изготовленные в СССР впервые, специально для атомохода. Цифры говорят за себя: вес среднего двигателя 185 т, мощность почти 20000 л. с. Двигатель пришлось доставить на ледокол в разобранном виде, по частям. Погрузка двигателя на судно представляла большие трудности.

Здесь тоже любят чистоту

С участка предварительной сборки готовые секции поступали прямо на стапель. Сборщики и проверщики без промедления устанавливали их на место.
При изготовлении узлов для первых опытно-штатных секций выяснилось, что стальные листы, из которых они должны быть изготовлены, весят 7 т, а имевшиеся на заготовительном участке подъемные краны обладали грузоподъемностью только до 6 т.
Прессы тоже были недостаточной мощности.

Следует рассказать еще об одном поучительном примере тесного содружества рабочих, инженеров и ученых.
По утвержденной технологии конструкции из нержавеющей стали сваривались вручную. Было проведено более 200 экспериментов; наконец, режимы сварки были отработаны. Пять сварщиков-автоматчиков заменили 20 сварщиков-ручников, которых перевели работать на другие участки.

Был, например, такой случай. Из-за очень больших габаритов нельзя было доставить по железной дороге на завод фор- и ахтерштевень - основные конструкции носа и кормы судна. Массивные, тяжелые, весом 30 и 80 г, - они не помещались ни на каких железнодорожных платформах. Инженеры и рабочие решили изготовить штевни непосредственно на заводе, сварив их отдельные части.

Чтобы представить сложность сборки и сварки монтажных стыков этих штевней, достаточно сказать, что минимальная толщина свариваемых частей достигала 150 мм. Сварка форштевня продолжалась 15 суток в 3 смены.

Пока на стапеле воздвигался корпус, в различных цехах завода изготавливались и монтировались детали, трубопроводы, приборы. Многие из них поступали с других предприятий. Главные турбогенераторы строились на Харьковском электромеханическом заводе, гребные электродвигатели - на ленинградском заводе "Электросила" имени С. М. Кирова. Такие электродвигатели создавались в СССР впервые.
В цехах Кировского завода собирались паровые турбины.

Использование новых материалов потребовало изменения многих установившихся технологических процессов. На атомоходе монтировались трубопроводы, которые соединялись раньше путем спайки.
В содружестве со специалистами сварочного бюро завода работники монтажного цеха разработали и внедрили электродуговую сварку труб.

Для атомохода потребовалось несколько тысяч труб различной длины и диаметра. Специалисты подсчитали, что если трубы вытянуть в одну линию, их длина составит 75 километров.

Наконец подоспело время завершения стапельных работ.
Перед спуском возникала то одна трудность, то другая.
Так, нелегким делом оказалась установка тяжелого пера руля. Поставить его на место обычным способом не позволяла сложная конструкция кормовой оконечности атомохода. Кроме того, к моменту установки огромной детали верхнюю палубу уже закрыли. В этих условиях рисковать было нельзя. Решили провести "генеральную репетицию" - поставили сначала не настоящий баллер, а его "двойник" - деревянный макет таких же размеров. "Репетиция" удалась, расчеты подтвердились. Вскоре многотонная деталь была быстро заведена на место.

Спуск ледокола на воду был уже не за горами. Большой спусковой вес судна (11 тысяч тонн) затруднял проектирование спускового устройства, хотя специалисты занимались этим устройством почти с момента закладки первых секций на стапеле.

По расчетам проектной организации, для осуществления спуска ледокола "Ленин" на воду требовалось удлинить подводную часть спусковых дорожек и углубить дно за котлованом стапеля.
Группа работников конструкторского бюро завода и корпусного цеха, разработала более совершенное спусковое устройство по сравнению с первоначальным проектом.

Впервые в практике отечественного судостроения было применено сферическое деревянное поворотное устройство и целый ряд других новых конструктивных решений.
Для уменьшения спускового веса, обеспечения большей устойчивости при спуске на воду и торможения судна, сошедшего со стапеля на воду, под корму и нос завели специальные понтоны.
Корпус ледокола был освобожден от строительных лесов. Окруженный портальными кранами, сверкая свежей краской, он был готов отправиться в свой первый короткий путь - на водную гладь Невы.

Идем дальше

Спускаемся

. . . ПЭЖ. Непосвященному человеку эти три буквы ничего не говорят. ПЭЖ - пост энергетики и живучести - мозг управления ледоколом. Отсюда с помощью приборов-автоматов инженеры-операторы - люди новой на флоте профессии - могут на расстоянии управлять работой парогенераторной установки. Отсюда поддерживается необходимый режим работы "сердца" атомохода - реакторов.

Опытные моряки, много лет плавающие на судах различных типов, удивляются: специалисты ПЭЖ поверх обычной морской формы носят белоснежные халаты.

Пост энергетики и живучести, а также ходовая рубка и каюты экипажа расположены в центральной надстройке.

А теперь дальше по истории:

5 декабря 1957 г. С утра непрерывно моросил дождь, временами падал мокрый снег. С залива дул резкий, порывистый ветер. Но люди словно не замечали хмурой ленинградской погоды. Задолго до спуска ледокола площадки вокруг стапеля заполнились людьми. Многие поднялись на строившийся по соседству танкер.

Ровно в полдень атомоход "Ленин" встал на якорь в том самом месте, где в памятную ночь 25 октября 1917 г. стояла "Аврора" - легендарный корабль Октябрьской революции.

Строительство атомохода вступило в новый период -началась его достройка на плаву.

Атомная энергетическая установка - важнейший участок ледокола. Над конструированием реактора трудились виднейшие ученые. Каждый из трех реакторов по своей мощности почти в 3,5 раза превосходит реактор первой в мире атомной электростанции Академии Наук СССР.

ОК-150 «Ленин» (до 1966г.)
Номинальная мощность реактора, ВМт 3х90
Номинальная паро-производительность, т/ч 3х120
Мощность на винтах, л/с 44 000

Компоновка всех установок - блочная. Каждый блок включает в себя реактор водо-водяного типа (т.е. вода является и теплоносителем, и замедлителем нейтронов), четыре циркуляционных насоса и четыре парогенератора, компенсаторы объема, ионообменный фильтр с холодильником и другое оборудование.

Реактор, насосы и парогенераторы имеют отдельные корпуса и соединены друг с другом короткими патрубками типа «труба в трубе». Все оборудование расположено вертикально в кессонах бака железоводной защиты и закрыто малогабаритными блоками защиты, что обеспечивает легкую доступность при ремонтных работах.

Ядерный реактор- это техническая установка, в которой осуществляется управляемая цепная реакция деления ядер тяжелых элементов с освобождением ядерной энергии. Реактор состоит из активной зоны и отражателя. Реактор водо-водяного типа - вода в нем является и замедлителем быстрых нейтронов и охлаждающей и теплообменной средой Активная зона содержит ядерное топливо в защитном покрытии (тепловыделяющие элементы - ТВЭЛы) и замедлитель. ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками ТВС.

ТВЭЛы, имеющие вид тонких стержней, собраны в пучки и заключены в чехлы. Такие конструкции называются тепловыделяющими сборками (ТВС). Активная зона реактора представляет собой совокупность активных частей свежих тепловыделяющих сборок (СТВС), которые в свою очередь состоят из тепловыделяющих элементов (ТВЭЛ). В реактор помещаются 241 СТВС. Ресурс современной активной зоны (2,1- 2,3 млн. МВт час.) обеспечивает энергетические потребности судна с ЯЭУ в течение 5-6 лет. После того, как энергоресурс активной зоны исчерпан, проводится перезарядка реактора.

Корпус реактора с эллиптическим днищем изготовлен из низколегированной теплостойкой стали с антикоррозийной наплавкой на внутренних поверхностях.

Принцип действия АППУ
Тепловая схема ППУ атомного судна состоит из 4-х контуров.

Через активную зону реактора прокачивается теплоноситель I контура (вода высокой степени очистки). Вода нагревается до 317 градусов, но не превращается в пар, поскольку находится под давлением. Из реактора теплоноситель 1 контура поступает в парогенератор, омывая трубы, внутри которых протекает вода II контура, превращающаяся в перегретый пар. Далее теплоноситель I контура циркуляционным насосом снова подается в реактор.

Из парогенератора перегретый пар (теплоноситель II контура) поступает на главные турбины. Параметры пара перед турбиной: давление - 30 кгс/см2 (2,9 МПа), температура - 300 °С. Затем пар конденсируется, вода проходит систему ионообменной очистки и снова поступает в парогенератор.

III контур предназначен для охлаждения оборудования АППУ, в качестве теплоносителя используется вода высокой чистоты (дистиллят). Теплоноситель III контура имеет незначительную радиоактивность.

IV контур служит для охлаждения воды в системе III контура, в качестве теплоносителя используется морская вода. Также IV контур используется для охлаждения пара II контура при разводке и расхолаживании установки.

АППУ выполнена и размещена на судне таким образом, чтобы обеспечить защиту экипажа и населения от облучения, а окружающую среду - от загрязнения радиоактивными веществами в пределах допустимых безопасных норм как при нормальной эксплуатации, так и при авариях установки и судна за счет. С этой целью на возможных путях выхода радиоактивных веществ созданы четыре защитных барьера между ядерным топливом и окружающей средой:

первый - оболочки топливных элементов активной зоны реактора;

второй - прочные стенки оборудования и трубопроводов первого контура;

третий - защитная оболочка реакторной установки;

четвертый - защитное ограждение, границами которого являются продольные и поперечные переборки, второе дно и настил верхней палубы в районе реакторного отсека.

Каждый хотел почуствовать себя немножко героем:-)))

В 1966 году было установлено два ок-900 вместо трех ок-150

ОК-900 “Ленин”
Номинальная мощность реактора, ВМт 2x159
Номинальная паро-производительность, т/ч 2x220
Мощность на винтах, л/с 44000

Помещение перед реакторным отсеком

Окна в реакторный отсек

В феврале 1965 г. произошла авария во время плановых ремонтных работ на реакторе №2 атомного ледокола "Ленин". В результате ошибки операторов активная зона на некоторое время была оставлена без воды, что вызвало частичное повреждение примерно 60% тепловыделяющих сборок.

При поканальной перегрузке удалось выгрузить из активной зоны лишь 94 из них, остальные 125 оказались неизвлекаемыми. Эта часть была выгружена вместе с экранной сборкой и помещена в специальный контейнер, который был заполнен твердеющей смесью на основе футурола и затем хранился в береговых условиях около 2 лет.

В августе 1967 г. реакторный отсек с ядерной энергетической установкой ОК-150 и собственными герметичными переборками был затоплен непосредственно с борта ледокола "Ленин" через днище в мелководном заливе Цивольки в северной части архипелага Новая Земля на глубине 40-50 м.

Перед затоплением из реакторов было выгружено ядерное топливо, а их первые контуры промыты, осушены и герметизированы. По данным ЦКБ "Айсберг", реакторы перед затоплением были заполнены твердеющей смесью на основе футурола.

Контейнер со 125 отработавшими тепловыделяющими сборками, заполненный футуролом, был перенесен с берега, размещен внутри специального понтона и затоплен. К моменту аварии судовая ядерная энергетическая установка проработала около 25.000 часов.

После этого ок-150 и были заменены на ок-900
Еще раз о принципах работы:
Как действует атомная энергетическая установка ледокола?
В реакторе в особом порядке помещаются стержни урана. Система урановых стержней пронизывается роем нейтронов, своего рода "запалов", вызывающих распад атомов урана с выделением огромного количества тепловой энергии. Стремительное движение нейтронов укрощается замедлителем. Мириады управляемых атомных взрывов, вызванных потоком нейтронов, происходят в толще урановых стержней. В результате образуется так называемая цепная реакция.
Чб фотографии не мои

Особенность атомных реакторов ледокола состоит в том, что в качестве замедлителя нейтронов применен не графит, как на первой советской атомной электростанции, а дистиллированная вода. Урановые стержни, помещенные в реактор, окружены чистейшей водой (дважды дистиллированной). Если ею наполнить до горлышка бутылку, то абсолютно нельзя будет заметить, налита в бутылку вода или нет: настолько прозрачна вода!
В реакторе вода нагревается выше температуры плавления свинца - более 300 градусов. Вода при этой температуре не закипает потому, что находится под давлением в 100 атмосфер.

Вода, находящаяся в реакторе, радиоактивна. С помощью насосов ее прогоняют через специальный аппарат-парогенератор, где она своим теплом превращает в пар уже нерадиоактивную воду. Пар поступает в турбину, вращающую генератор постоянного тока. Генератор питает током гребные электродвигатели. Отработавший пар направляется в конденсатор, где снова превращается в воду, которая насосом опять нагнетается в парогенератор. Таким образом,в системе сложнейших механизмов происходит своеобразный круговорот воды.
Ч-б фотографии взяты мною из интернета

Реакторы установлены в специальные металлические барабаны, вваренные в бак из нержавеющей стали. Сверху реакторы закрыты крышками, под которыми расположены различные приспособления для автоматического подъема и перемещения урановых стержней. Всю работу реактора контролируют приборы, а при необходимости в действие вступают "механические руки"-манипуляторы, которыми можно управлять издали, находясь за пределами отсека.

В любое время реактор можно осмотреть с помощью телевизора.
Все, что представляет опасность своей радиоактивностью, тщательно изолировано и расположено в специальном отсеке.
Система дренажей отводит опасные жидкости в особую цистерну. Имеется также система и для улавливания воздуха со следами радиоактивности. Воздушный поток из центрального отсека выбрасывается через грот-мачту на высоту 20 м.
Во всех уголках судна можно увидеть специальные приборы-дозиметры, готовые в любой момент известить о повышенной радиоактивности. Кроме того, каждый член экипажа снабжен индивидуальным дозиметром карманного типа. Безопасная эксплуатация ледокола обеспечена полностью.
Конструкторы атомохода предусмотрели всевозможные случайности. Если выйдет из строя один реактор, то его заменит другой. Одну и ту же работу на судне могут выполнить несколько групп одинаковых механизмов.
Таков основной принцип работы всей системы атомной энергетической установки.
В отсеке, где помещаются реакторы, имеется огромное количество труб сложных конфигураций и больших размеров. Трубы необходимо было соединять не как обычно, при помощи фланцев, а сваривать встык с точностью до одного миллиметра.

Одновременно с монтажом атомных реакторов быстрым темпом устанавливались главные механизмы машинного отделения. Здесь монтировались паровые турбины, вращающие генераторы,
на ледоколе; только одних электродвигателей различной мощности на атомоходе более пятисот!

Коридор перед медпунктом

Пока шел монтаж энергетических систем, инженеры работали над тем, как лучше и быстрее смонтировать и ввести в строй систему управления судовыми механизмами.
Все управление сложным хозяйством ледокола осуществляется автоматически, непосредственно из ходовой рубки. Отсюда капитан может изменить режим работы гребных двигателей.

Собственно медпункт:Медицинские кабинеты - терапевтический, зубоврачебный рентгеновский, физиотерапевтический, операционная? процедур: юя а также лаборатория и аптека - оборудованы новейшей лечебно-профилактической аппаратурой.

Работы, связанные со сборкой и установкой надстройки судна, Предстояла нелегкая задача: собрать огромную надстройку, весившую около 750 т. В цехе были построены для ледокола также катер с водометным движителем, грот- и фокмачты.
Собранные в цехе четыре блока надстройки были доставлены на ледокол и здесь установлены плавучим краном.

На ледоколе предстояло выполнить огромный объем изоляционных работ. Площадь изоляции составляла около 30000 м2. Для изоляции помещений применялись новые материалы. Ежемесячно предъявлялось для приемки по 100-120 помещений.

Швартовные испытания - третий по счету (после стапельного периода и достройки на плаву) этап сооружения каждого судна.

До запуска парогенераторной установки ледокола пар должен был подаваться с берега. Устройство паропровода осложнялось отсутствием специальных гибких шлангов большого сечения. Применить паропровод из обычных металлических труб, намертво закрепленных, не представлялось возможным. Тогда по предложению группы новаторов применили особое шарнирное устройство, обеспечивавшее надежную подачу пара по паро-проводу на борт атомохода.

Первыми были запущены и испытаны пожарные электронасосы, а потом и вся пожарная система. Затем, начались испытания вспомогательной котельной установки.
Двигатель заработал. Дрогнули стрелки приборов. Минута, пять, десять. . . Двигатель работает отлично! А через некоторое время монтажники приступили к регулировке приборов, контролирующих температуру воды и масла.

При испытании вспомогательных турбогенераторов и дизель-генераторов понадобились специальные устройства, позволяющие загружать два параллельно работающих турбогенератора.
Как же проходило испытание турбогенераторов?
Основная трудность заключалась в том, что регуляторы напряжения в ходе работы потребовалось заменить новыми, более совершенными, обеспечивающими автоматическое поддерживание напряжения даже в условиях большой перегрузки.
Швартовные испытания продолжались. В январе 1959 г. турбогенераторы со всеми обслуживающими их механизмами и автоматами были налажены и проверены. Одновременно с испытанием вспомогательных турбогенераторов прошли испытания электронасосов, вентиляционной системы и другого оборудования.
Пока испытывались механизмы, полным ходом проводились и другие работы.

Успешно выполняя свои обязательства, адмиралтейцы в апреле закончили испытания всех главных турбогенераторов и гребных электродвигателей. Результаты испытаний оказались отличными. Подтвердились все расчетные данные, сделанные учеными, конструкторами, проектировщиками. Первый этап испытаний атомохода был закончен. И закончен Успешно!

В апреле 1959 г.
В дело вступили монтажники трюмного отделения.

Первенец советского атомного флота ледокол "Ленин" -судно, прекрасно оборудованное всеми средствами современной радиосвязи, локационными установками, новейшим навигационным оборудованием. На ледоколе установлены два радиолокатора - ближнего и дальнего действия. Первый предназначен для решения оперативных навигационных задач, второй - для наблюдения за окружающей обстановкой и вертолетом. Кроме того, он должен дублировать локатор ближнего действия в условиях снегопада или дождя.

Аппаратура, размещенная в носовой и кормовой радиорубках, обеспечит надежную связь с берегом, с другими судами и с самолетами. Внутрисудовая связь осуществляется автоматической телефонной станцией на 100 номеров, отдельными телефонами в различных помещениях, а также мощной общесудовой радиотрансляционной сетью.
Работы по монтажу и регулировке средств связи вели специальные бригады монтажников.
Ответственную работу провели электромонтажники по вводу в действие электрорадиоаппаратуры и различных приборов в ходовой рубке.

Атомоход сможет долго плавать без захода в порты. Значит очень важно, где и как будет жить экипаж. Вот почему при создании проекта ледокола особое внимание было уделено жилищно-бытовым условиям команды.

Далее жилые комнаты

. .. Длинные светлые коридоры. Вдоль них расположены матросские каюты, в основном, одноместные, реже - на двух человек. Днем одно из спальных мест убирается в нишу, другое превращается в диван. В каюте, против дивана, - письменный стол и вращающееся кресло. Над столом - часы и полка для книг. Рядом - шкафы для одежды и личных вещей.
В небольшом входном тамбуре находится еще один шкаф - специально для верхней одежды. Над небольшим фаянсовым умывальником укреплено зеркало. Горячая и холодная вода в кранах - круглые сутки. Словом, уютная современная малогабаритная квартира.

Во всех помещениях люминесцентное освещение. Электропроводка скрыта под зашивкой, ее не видно. Стеклянные экраны молочного цвета закрывают лампы дневного света от резких прямых лучей. У каждого спального места небольшой светильник, дающий мягкий розовый свет. После трудового дня, придя к себе в уютную каюту, моряк сможет прекрасно отдохнуть, почитать, послушать радио, музыку...

Есть на ледоколе и бытовые мастерские -сапожная и портновская; имеются парикмахерская, механическая прачечная бани душевые.
Возвращаемся к центральной лестнице

Поднимаемся к каюте капитана

Более полутора тысяч шкафов, кресел, диванов, полочек заняли свои места в каютах и служебных помещениях. Правда, все это изготовляли не только деревообделочники Адмиралтейского завода, но и рабочие мебельной фабрики № 3, завода имени А. Жданова, фабрики "Интурист". Адмиралтейцы же сделали 60 отдельных гарнитуров мебели, а также различные платяные шкафы, койки, столы, подвесные шкафчики и тумбочки - красивую добротную мебель.


Ледокол «Ямал» — один из новейших российских арктических судов — пробивается через торосы

На заснеженной глади замерзшей реки копошились сотни людей. Издалека то, что там творилось, можно было принять за странный праздник или кулачный бой стенка на стенку. Однако приблизившись и присмотревшись, наблюдатель заметил бы, что в движениях людей присутствует упорядоченность, свойственная совместной работе. Несколько десятков мужиков долбили пешнями борозду во льду, а потом, присоединившись к сотням других, впрягались в необычный механизм — длинный, метров двадцати, заостренный ящик, нагруженный в задней части чугунными чушками. Снаряд, прозванный ледовыми санями, вползал на лед, продавливал его и подминал под себя отколовшиеся глыбы, оставляя за собой пересекающую реку длинную полынью шириной более двух метров.

Так в петровские времена были устроены ледовые паромы, которые иногда оснащались еще и пушками. Их ядра дробили лед по ходу парома.

Русская зима, длящаяся в северных районах по девять месяцев в году, подстегивала пытливый ум искать необычные способы плавания. А то, что фасадом наша страна выходит в Северный Ледовитый океан, представляющий собой кратчайшую дорогу из европейской части страны к богатствам Восточной Сибири и Дальнего Востока, заставляло идти через льды с риском для жизни.

В погоне за прибылью

Морское дело, привезенное при Петре I из Голландии и Англии, принесло в русский язык множество новых слов. Однако и Россия обогатила иностранные языки морским термином: ведь и немецкое Eisbreher, и английское icebreaker суть кальки с русского слова «ледокол». И обязаны мы этим кронштадтскому городскому голове Михаилу Бритневу.

Понятно, что двигали русским заводчиком, державшим на линии Петербург-Ораниенбаум-Кронштадт небольшой флот, не лингвистический интерес и не чистое честолюбие. Путь в Кронштадт пролегает по Финскому заливу, покрытому льдом 120 дней в году. Зимой туда добирались по замерзшему морю на санях, однако пока лед тонок, сообщение почти прекращалось.

Пытливый предприниматель, знакомый с опытом жителей русского Севера — поморов, которые более пятисот лет ходили по арктическим морям на своих деревянных суденышках, решил перенять их опыт. Обводы корпуса поморских кочей образовывали в носовой части острый угол приблизительно в 20−30 градусов. Вот и Бритнев приказал так же переделать носовую часть своего 60-сильного парохода «Пайлот». И 25 апреля 1864 года, значительно раньше обычного начала навигации, «Пайлот», ломая подтаявший лед, прошел из Кронштадта в Ораниенбаум, принеся своему владельцу немалый дополнительный доход. Подобно древним «ледяным саням», судно взбиралось на ледовое поле и своим весом ломало его. Позже судовладелец приспособил для ледового плавания и другой свой пароход — «Бой». Оба корабля прослужили в питерских водах около 25 лет, отработав способ прохождения ледовых полей, который и сегодня используют все ледоколы, включая суперсовременные атомные.

В 1871 году, когда небывалые морозы сковали европейские северные порты, к Бритневу обратились гамбургские промышленники, и он продал им чертежи переоборудованного «Пайлота» за 300 рублей. По этим чертежам был построен первый заграничный ледокол Eisbreher I, и конструкция корабля получила широкое распространение в мире.

Именно успех бритневской затеи подал известному русскому флотоводцу и океанологу адмиралу Макарову идею строительства первого линейного ледокола «Ермак», сыгравшего серьезную роль в освоении Арктики.

«Орех» среди льдов

В своей публичной лекции 1897 года «К Северному полюсу — напролом» адмирал Макаров заявил: «Ни одна нация не заинтересована в ледоколах, сколько Россия. Природа заковала наши моря льдами, но техника дает теперь огромные средства, и надо признать, что в настоящее время ледяной покров не представляет более непреодолимого препятствия судоходству».

Год спустя в английском Ньюкасле был спущен на воду «Ермак». Он был построен по техническому заданию, разработанному под руководством самого Степана Макарова и поддержавшего его рискованный проект знаменитого русского химика Дмитрия Менделеева.

Действительно, как показали испытания, «непреодолимого препятствия» северные льды не представляли, и все же сладить с ними оказалось непросто.

Архимед, конечно, был прав, утверждая, что на погруженное в жидкость тело действует выталкивающая сила, равная весу вытесненной им жидкости. Однако во льдах судно еще и подвергается чудовищному боковому давлению, которое может раздавить его, как скорлупку. Поэтому сечение корпуса ледокола делается в виде бочонка или ореха, причем ватерлиния должна находиться ниже самой широкой части. Тогда льды, стискивающие ледокол, как бы ни старались, будут выталкивать его и не смогут раздавить. Естественно, к ледоколам применяются повышенные требования прочности и непотопляемости. Если заглянуть под утолщенную по сравнению с обычным кораблем обшивку, можно увидеть систему усиленных балок: стрингеров, шпангоутов… — а весь корпус ледокола разделен водонепроницаемыми переборками на несколько герметичных отсеков. В районе ватерлинии обшивка усилена дополнительной полосой — так называемым ледовым поясом. А для преодоления сопротивления трения корпуса о лед применяется пневмоомывающее устройство, прокачивающее через мелкие отверстия в борту пузырьки воздуха.

Скос обводов корпуса в носовой части, примененный изобретателем ледокола Бритневым, используется и сейчас. Причем заостряется не только форштевень («нос» корабля), но и ахтерштевень, поскольку двигаться во льдах приходится «челночным» способом — «вперед-назад». Интересно, что первоначально у ледокола «Ермак» было два гребных винта — спереди и сзади. Такую схему адмирал Макаров подсмотрел у американских малых ледоколов, ходивших по Великим озерам. Однако первое же столкновение с арктическими льдами показало, что передний винт в высоких широтах не помощник, и ледокол переделали.

В атаке и обороне

Действие ледокола отнюдь не исчерпывается простой колкой льда, хотя, конечно, чем большая часть окажется поверх ледяного поля, тем длиннее плечо рычага и выше эффективность работы. Важна, как было сказано, и форма «носа», и упор (упорная сила) винтов, и инерционные свойства судна, работающего набегами.

Ледокол можно было бы сравнить с воинским подразделением, имеющим средства и тактику как для обороны, так и для наступления. Для наступления каждый ледокол оснащен дифферентной системой. В нескольких словах ее можно описать как две цистерны — носовую и кормовую, — поочередно наполняемые забортной водой. На первых ледоколах цистерны были соединены трубой, позднее каждую из них стали оснащать собственной помпой.

Забравшись на ледяное поле, ледокол наполняет водой носовые цистерны и придает дополнительную динамику движению сверху вниз. Попеременное заполнение цистерн заставляет его энергично раскачиваться с носа на корму, как действуют колуном, когда он застревает в полене. Выкачивая воду из носовых цистерн и заполняя кормовые, ледокол быстрее возвращается на чистую воду, чтобы повторить атаку.

Такая же система обеспечивает и раскачивание судна с борта на борт: с обeих сторон расположены дополнительные цистерны.

Естественно, что все эти действия требуют необычной для любого другого корабля энергонасыщенности. Неудивительно, что достаточно долго ледоколы не могли выполнять никакой другой морской работы — ни грузовой, ни пассажирской, — кроме проводки судов: все внутреннее пространство этих «бронированных сейфов» занимали двигатель и запас топлива. Как раз основной морской специальностью ледокола обусловлена форма его корпуса: он делается широким, чтобы остающийся позади него канал был удобен для прохода ведомых кораблей. Длину же судна, для лучшей маневренности, стараются уменьшить.

Первые ледоколы были паровыми, с котлами, работавшими на угле, и паровыми установками. Угля, заполнявшего почти все свободное трюмное пространство, обычно хватало дней на тридцать. Случалось, посреди маршрута командир ледокола сообщал каравану, что прекращает проводку и уходит в порт пополнять запасы топлива.

Следующим поколением стали дизельные ледоколы, силовые установки которых вращали роторы электрогенераторов. Ток поступал на электромоторы, приводившие в движение гребной вал с винтом.

Но для покорения арктических льдов требовалась все большая мощность, и на смену дизельным пришли атомные ледоколы, реакторы которых приводят в действие парогенераторы, паровые турбины обеспечивают работу электрогенераторов, а электромоторы — гребных валов с винтами. В трюмах атомоходов место топлива заняли мощные системы защиты от радиации.

По лезвию

Сто сорок лет истории ледоколов многое изменили в их конструкции, более всего возросла их мощь. Если мощность двигателей «Ермака» составляла 9,5 тыс. л.с., то вышедший в море примерно через полвека дизель-электрический ледокол «Москва» был вдвое мощнее — 22 тыс. л.с. Современные атомные ледоколы типа «Таймыр» запрягают уже 50 тыс. «лошадей».

Из-за трудностей их морской профессии мощность двигательных установок ледоколов в расчете на тонну водоизмещения вшестеро выше, чем у океанских лайнеров. Но даже атомные ледоколы качественно остались теми же — бронированными ящиками, наполненными табунами «лошадей». Дело ледоколов — проломить полынью для идущих за ними караванов обычных танкеров и транспортников. Этот принцип организации перевозок можно сравнить с движением барж за буксиром. Однако в последнее время все больше востребованы самоходные баржи, и морские инженеры стали задумываться о том, как научить транспортные корабли самостоятельно ходить во льдах.

Идея не нова: еще в 60-х годах XIX века первый русский железный военный корабль — броненосную канонерскую лодку «Опыт» попытались переделать по проекту инженера Эйлера в оригинальное ледокольное судно. «Опыту» придали носовой таран, установили на борту несколько кранов для сбрасывания 20−40-пудовых гирь, а в подводной части устроили «выстрелы» — шесты с укрепленной на них взрывчаткой. Однако испытаний «Опыт» не выдержал и был снова переоборудован в канонерскую лодку, названную «Миной».

Позднее предпринимались попытки резать лед фрезами или растапливать, но и они себя не оправдали (хотя на атомных ледоколах «Арктика» и «Сибирь» используются вспомогательные устройства нагрева носовой части корпуса). И тогда было решено пытаться изменить не просто способ ломки льда, но сам ледокол, сделав его не «колуном», а «лезвием». Для этого планировалось превратить корабль в «катамаран», два корпуса которого располагались бы друг над другом: все грузы поместить в нижнюю, подводную часть, а силовые установки — в надводную, и обе части соединить узкими «ножами», внутри которых разместятся идущие из корпуса в корпус погрузочно-разгрузочные трубы. Появится ли такой ледокол-транспортник, неизвестно, но то, что российский ледокольный флот должен развиваться и впредь, сомнению не подлежит: просторы Заполярья всегда будут манить своими богатствами.

Начнём с самого названия судна: как видно на фото, оно не переведено на английский, а транслитерировано. Такова практика международного судоходства.

Атомный ледокол "50 лет Победы" (ранее "Урал") является крупнейшим в мире. Его строительство велось на Балтийском заводе г.Ленинграда (ныне Санкт-Петербурга) начиная с 4 октября 1989 г. На воду судно было спущено уже в декабре 1993 г., но в виду сложившейся в стране обстановки, повлекшей приостановку финансирования проекта, строительство на долгие годы было заморожено и возобновлено только в 2003 г. После этого 1 февраля 2007 г. ледокол впервые вышел на ходовые испытания в Финский залив, и 23 марта того же года на нём был поднят флаг. В завершение, 11 апреля 2007 г. судно прибыло в постоянный порт приписки г.Мурманск.

Основные характеристики и данные:

Тоннаж: 22,33 / 25,84 тысяч тонн
Длина: 159,6 м
Ширина: 30 м
Высота: 17,2 м (высота борта)
Средняя осадка: 11 м
Силовая установка: 2 ядерных реактора
Винты: 3 винта фиксированного шага с 4 съёмными лопастями
Мощность: 75 000 л. с.
Скорость: макс. 21,4 узлов
Автономность плавания: 7,5 мес. (по провизии)
Экипаж: 138 человек. После ряда сокращений уменьшен до 106 человек

Любой механизм начинается с управления, управление же судна, в частности гребным и рулевым механизмами осуществляется с мостика:

Управляя штурвалом на мостике, рулевой приводит в движение гидравлическую рулевую систему, находящуюся в другом конце судна. На фото изображён вал, поворачивающий руль в соответствии с поворотом штурвала:

Как уже было указано в основных характеристиках, силовой установкой, то есть сердцем ледокола является силовая установка, состоящая из двух ядерных реакторов. На судне было два места, где съёмка запрещена: это пункт наблюдения за самими реакторами и центральный пункт управления.

Если вкратце обрисовать принцип получения энергии с помощью реакторов, то он будет выглядеть следующим образом: в процессе деления урана 235 образуется пар под давлением около 30 кубических метром на квадратный сантиметр, с помощью электрогенератора он преобразуется электричество и подаётся на электродвигатели, вращающие винты.

Электрогенераторы, подающие ток на электродвигатели:

Чтобы ориентироваться во всей системе ледокола, даже для стандартного моряка требуется как минимум 3 года подготовки, поэтому экипаж укомплектовывается выпускниками специализированных вузов, таких как Государственная морская академия им. адмирала С.О. Макарова.




В этом помещении расположены электродвигатели, которые с помощью силы тока приводят в движение оси, соединённые с гребными винтами:

Два электродвигателя боковых винтов расположены в одном помещении, электродвигатель, вращающий центральный винт, находится в соседнем. На фото: электродвигатель одного из боковых винтов.

А это смежная электроустановка:

На ледоколе повсюду встречаются напоминания о том, что необходимо сделать, и что делать нельзя:







Радиорубка:

Нормы приличия соблюдаются строго:

Одного заряда уранового топлива хватает на 5-6 лет непрерывной эксплуатации, т.е. всё это время судно может фактически находиться в море, не возвращаясь в порт...если бы не необходимость в провизии: одной загрузки продовольствия достаточно для 7 месяцев плавания - в любом случае солидный срок. Но как быть с водой?
Для обеспечения пресной водой нужд экипажа и оборудования на судне установлены опреснители морской воды, способные выдавать 120 тонн пресной воды в сутки. Соляной остаток, выделяемый из этой воды, подходит для пищевой продукции, но за ненадобностью сбрасывается за борт.

Стоит отметить, что перемещение по внутренностям ледокола - это своего рода физическое упражнение,т.к. оно сопряжено с постоянными спусками и подъёмами по крутым и узким лестницам:

Если двигательное оборудование ледокола полностью российского производства, то навигационное - всё японское:

Знакомство с бортовым бытом команды я решил оставить на окончание экспедиции, о чём в итоге пришлось сильно пожалеть,потому что именно в конце пути мы попали в сильнейший шторм, который длился более двух суток. Разумеется, в таких условиях было не до съёмки. Всё что у меня осталось на эту тему - фотография столовой для экипажа:

Так выглядят интерьеры в надстройке судна. На фото: главная лестница.

Это кафетерий, где можно поиграть в дартс или кикер, посмотреть DVD или послушать музыку, почитать книгу или журнал, сыграть в какую-нибудь настольную игру или просто посидеть за чашкой кофе или чая:

Литература в кафетерии представлена на разных языках: на английском, русском, немецком и японском. Та же ситуация и с DVD, только вместо японского там преобладает китайский.

По соседству с кафетерием расположен бар, где можно посидеть на диване за бокалом чего-нибудь, любуясь через стекло иллюминатора видами моря:

В корме ледокола находится многофункциональный зал, где проводятся торжественные мероприятия, концерты, лекции и презентации:

Помимо этого, начиная от носа судна до его центральной части поверх ледокольного пояса также установлена дополнительная защита из нержавеющей стали толщиной 7 мм, способствующая снижению трения между корпусом и льдом.

Также ледокол оснащён специальным турбокомпрессором,который соединён с системой труб.По ней под низким давлением подаётся воздух,который выходит наружу через систему отверстий в носовой части судна.За счёт этого достигается дополнительное снижение трения между корпусом и льдом. При работе компрессора вода у носа ледокола выглядит так, словно кипит.

Так как ледокол - ядерный объект, ему необходима сверхпрочная защита, коей он в должной степени обеспечен. В случае если в борт отсека ядерного реактора ледокола на полном ходу врежется аналогичное судно, реактор не получит повреждений и сможет работать дальше. Аналогично и с верхней частью реакторного отсека: падение самолёта не нанесёт ущерба ядерной установке и не вызовет перебоев в работе. Но какие последствия вызовет ракетный удар, неизвестно, потому как судно это мирного назначения, и такие испытания не проводились.

Что касается прокладывания фарватера во льдах, то судно вовсе не режет лёд, как это может показаться, а именно раскалывает его, наседая на него носовой частью. Поэтому при движении через плотное ледовое покрытие раздаётся громкий звук от ударов носа о льдины, а корпус судна сильно вздрагивает.

На этом мой рассказ об устройстве ледокола подошёл к концу. впереди ждут истории об Арктике, Северном полюсе и Земле Франца-Иосифа.

Продолжение следует!

Первый ледокол в мире появился еще в XVIII веке. Это был не очень больших размеров пароход, способный ломать лед в гавани Филадельфии. Прошло немало времени с тех пор, как колесо было заменено турбиной, а затем появился и мощный атомный реактор. Сегодня огромные атомоходы взламывают арктические льды огромной мощностью.

Что такое ледокол?

Это судно, используемое в покрытых мощным слоем льда водах. оснащены ядерными силовыми установками, в связи с чем обладают большей мощностью, чем дизельные, благодаря чему они проще покоряют замерзшие водоемы. Ледоколы обладают еще одним явным преимуществом - им не нужна дозаправка топливом.

Ниже в статье представлен самый большой ледокол в мире (размеры, конструкция, особенности и т. д.). Также, прочитав материал, можно ознакомиться с крупнейшими лайнерами мира подобного типа.

Общие сведения

Следует отметить, что все 10 существующих на сегодня атомных ледоколов построены и спущены на воду во времена бытности СССР и России. Незаменимость подобных лайнеров доказывает операция, произошедшая в 1983 году. В то время около полсотни судов, включая и дизельные ледоколы, оказались на востоке Арктики, в ледовой ловушке. Лишь благодаря атомному они смогли освободиться из плена и доставить важные грузы в близлежащие населенные пункты.

Строить атомоходы в России стали давно, потому что только у нашего государства с Северным Ледовитым океаном существует соприкосновение большой протяженности - знаменитый морской Северный путь, длина которого составляет в 5 тыс. 600 километров. Начало он берет у а заканчивается у бухты Провидения.

Есть один интересный момент: ледоколы специально окрашиваются в темно-красный цвет, чтобы были хорошо заметны во льдах.

Ниже в статье представлены самые большие ледоколы в мире (топ-10).

Ледокол «Арктика»

Один из самых крупных ледоколов - атомоход «Арктика» в историю вошел как самый 1-й надводный корабль, который достиг Северного полюса. В 1982-1986 годах он носил название «Леонид Брежнев». Закладка его состоялась в Ленинграде, на Балтийском заводе, в июле 1971 года. В его создании принимали участие более 400 предприятий и объединений, проектных и исследовательских научных и прочих организаций.

В воду ледокол был спущен в конце 1972 года. Предназначение судна - проводка судов по Северному Ледовитому океану.

Длина атомохода - 148 метров, а борт имеет высоту примерно 17 метров. Ширина его - 30 метров. Мощность паропроизводящей атомной установки - более 55 мегаватт. Технические показатели судна позволяли проламывать лед, имеющий толщину 5 метров, а скорость его в чистой воде развивалась до 18 узлов.

Ниже представлены 10 самых крупнейших (по длине) современных ледоколов всего мира:

1. «Севморпуть» - это судно ледокольно-транспортное. Длина его равна 260 метрам, высота соответствует размерам многоэтажного дома. Судно способно пройти через толщину льда в 1 метр.

2. «Арктика» - крупнейший атомный ледокол длиной 173 метра. Спущен он на воду в 2016 году и представляет первый атомный ледокол Российской Федерации. Способен раскалывать льды толщиной почти до 3 метров.

3. «50 лет Победы» - морской атомный ледокол (самый большой в мире) класса «Арктика», отличающийся внушительной мощью и глубокой посадкой. Длина его равна 159,6 метра.

4. «Таймыр» - атомный речной ледокол, разбивающий льды в устьях рек толщиной до 1,7 метра. Длина его составляет 151,8 метра. Особенность судна - уменьшенная посадка и способность работать при низких экстремальных температурах.

5. «Вайгач» - построен по одному проекту c «Таймыром» (но он чуть моложе). Оборудование атомное было установлено на теплоход в 1990 году. Длина его - 151,8 м.

6. «Ямал» - знаменит тем, что именно на этом ледоколе происходила встреча начала третьего тысячелетия на Северном полюсе. Общее количество рейсов атомохода к данному пункту составило почти 50. Длина его составляет 150 метров.

7. Healy - самый крупный ледокол США. В 2015 году на нем американцы впервые смогли совершить путешествие на Северный полюс. Исследовательское судно оснащено новейшим лабораторным и измерительным оборудованием. Длина его - 128 метров.

8. PolarSea - один из старейших ледоколов Соединенных Штатов Америки, построенный в 1977 году. Сиэтл - порт приписки. Длина судна - 122 метра. Возможно, в связи со старостью он скоро будет списан.

9. Louis S. St-Laurent - самый большой ледокол, построенный в Канаде (120 метров длина) в 1969 году и прошедший полную модернизацию в 1993 году. Это первое в мире судно, которое достигло в 1994 году Северного полюса.

10. Polarstern - атомоход Германии, построенный в 1982 году и предназначенный для научных исследований. Старейшее судно имеет длину 118 метров. В 2017 году будет построен Polarstern-II, который заменит предшественника и примет вахту в Арктике.

Самый большой ледокол в мире: фото, описание, назначение

«50 лет Победы» - в большей степени модернизированный экспериментальный проект 2-й серии ледоколов типа «Арктика». На этом судне применена форма носовой оконечности в виде ложки. Впервые она была использована при разработке экспериментального «Кэнмар Кигорияк» (ледокол, Канада) в 1979 году и убедительно доказала эффективность.

Это самый крупный и мощный в мире оснащенный современной цифровой системой автоматического управления. Также он имеет модернизированный комплекс средств для биологической защиты энергетической атомной установки. Оборудован он и отсеком экологическим, оснащенным новейшим современным оборудованием, собирающим и утилизирующим продукты жизнедеятельности персонала на судне.

Ледокол «50 лет Победы» занимается не только освобождением других судов из ледового плена, он также ориентирован на выполнение туристических круизов. Конечно, пассажирских кают на судне нет, поэтому туристов размещают в обычных каютах состава корабля. Однако борт корабля оснащен рестораном, сауной, бассейном и тренажерным залом.

Краткая история о корабле

Самый большой в мире ледокол - «50 лет Победы». Он был сконструирован в Ленинграде, на Балтийском заводе, в 1989 году, а спустя 4 года построен и впервые спущен на воду. Однако строительство его не закончилось в связи с финансовыми неурядицами. Только в 2003-м его было возобновлено его строительство, а в феврале 2007 года в Финском заливе начались испытания. Портом его приписки стал Мурманск.

Несмотря на затяжной старт, на сегодня за плечами корабля - более сотни походов к Северному полюсу.

Самый мощный и большой ледокол «50 лет Победы» - по счету 8-й атомный ледокол, спроектированный и сооруженный на Балтийском заводе.

«Сибирь»

В свое время Советский Союз не имел себе равных в области строительства атомных ледоколов. В те времена нигде в мире не было подобных судов, тогда как у СССР было 7 атомных ледоколов. К примеру, «Сибирь» - судно, ставшее непосредственным продолжением атомных установок типа «Арктика».

Судно было оснащено системой спутниковой связи, отвечающей за факс, навигацию и телефонную связь. Также в нем имелись все удобства: зал для отдыха, бассейн, сауна, библиотека, тренировочный зал и огромная столовая.

Ледокол «Сибирь» в историю вошел как первое судно, совершившее круглогодичную навигацию от Мурманска до Дудинки. Кроме того, он является вторым судном, достигшим вершины планеты на Северном полюсе.

В 1977 году (момент ввода ледокола в строй) оно имело самые большие размеры: 29,9 метра - ширина, 147,9 метра - длина. В те времена он был самым большим в мире ледоколом.

Значение ледоколов

Важность подобных судов в ближайшем будущем будет только возрастать, потому что в перспективе намечено множество мероприятий по активной разработке природных ресурсов, находящихся под дном великого Северного Ледовитого океана.

По отдельным участкам навигация на длится всего лишь 2-4 месяца, потому что все остальное время вся вода покрыта льдом толщиной до 3 метров и более. Чтобы не рисковать кораблем и командой, а также в целях экономии горючего с ледоколов высылаются самолеты и вертолеты для совершения разведки в поисках более легкого пути.

Самые большие в мире ледоколы имеют важную особенность - они могут автономно курсировать по Северному Ледовитому океану в течение года, взламывая носовой частью необычной формы льды толщиной до 3 метров.

Заключение

СССР в свое время имел абсолютное господство в мире по количеству подобных судов. Всего в те времена было сооружено семь атомных ледоколов.

С 1989 года некоторые ледоколы подобного типа стали использоваться и для туристических экскурсий, совершающихся большей частью к Северному полюсу.

В зимнее время толщина льда в океане в среднем составляет 1,2-2 метра, а в некоторых участках достигает 2,5 метра, но ледоколы атомные способны ходить по таким водам со скоростью 20 километров в час (11 узлов). В водах, свободных ото льдов, скорость может достигать 45 километров в час (или 25 узлов).

Бухгалтерия