Презентация на тему: "Электромагнитные волны и их свойства". Презентация, доклад электромагнитные волны и их свойства Электромагнитные волны презентация




Электромагнитное поле излучается заметным образом не только при колебании заряда, но и при любом быстром изменении его скорости. Причем интенсивность излучения волны тем больше, чем больше ускорение, с которым движется заряд. Векторы Е и В в электромагнитной волне перпендикулярны друг другу п перпендикулярны направлению распространения волны. Электромагнитная волна является поперечной


Историческая справка Максвелл был глубоко убежден в реальности электромагнитных волн, но не дожил до их экспериментального обнаружения. Лишь через 10 лет после его смерти электромагнитные волны экспериментально получены Герцем. В 1895году А.С. Попов продемонстрировал практическое применение ЭМВ для радиосвязи. Сейчас мы знаем, что все пространство вокруг нас буквально пронизано электромагнитными волнами разных частот.


Электромагнитные волны разных частот отличаются друг от друга. В настоящее время все электромагнитные волны разделены по длинам волн (и, соответственно, по частотам) на шесть основных диапазонов: радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновские лучи, γ-излучение


Радиоволны Получаются с помощью колебательных контуров и макроскопических вибраторов. Свойства: радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. проявляют свойства дифракции и интерференции. Применение: Радиосвязь, телевидение, радиолокация.


Инфракрасное излучение (тепловое) Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фототгластинки); поглощаясь веществом, нагревает его; невидимо; способно к явлениям интерференции и дифракции; регистрируется тепловыми методами. Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов.




1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн" title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн" class="link_thumb"> 10 Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ. Применение: в медицине, в промышленности. 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн"> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ. Применение: в медицине, в промышленности."> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн" title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн"> title="Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способн">


Рентгеновские лучи Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Применение: в медицине с целью диагностики заболеваний внутренних органов; в промышленности для контроля внутренней структуры различных изделий.




Влияние электромагнитных излучений на живые организмы электромагнитное излучение частотой 50 Гц, которое создается проводами сети переменного тока, при длительном воздействии вызывает сонливость, признаки усталости, головные боли. Чтобы не усиливать действие бытовых электромагнитных излучений, специалисты рекомендуют не располагать близко друг к другу работающие в наших квартирах электроприборы микроволновую печь, электроплиту, телевизор, стиральную машину, холодильник, утюг, электрический чайник. Расстояние между ними должно быть не менее 1,52 м. На такое же расстояние следует удалять от телевизора или от холодильника ваши кровати.




Вопросы на закрепление 1.Что называют электромагнитной волной? 2.Что является источником электромагнитной волны? 3.Как ориентированы векторы Е и В по отношению друг к другу в электромагнитной волне? 4.Какова скорость распространения электромагнитных волн в воздухе?


Вопросы на закрепление 5. Какие выводы относительно электромагнитных волн вытекали из теории Максвелла? 6. Какие физические величины периодически меняются в электромагнитной волне? 7. Какие отношения между длиной волны, ее скоростью, периодом и частотой колебаний справедливы для электромагнитных волн? 8. При каком условии волна будет достаточно интенсивной для того, чтобы ее можно было зарегистрировать?


Вопросы на закрепление 9. Когда и кем были впервые получены электромагнитные волны? 10. Приведите примеры применения электромагнитных волн. 11. Расположите в порядке возрастания длины волны электромагнитные волны различной природы: 1) инфракрасное излучение; 2) рентгеновское излучение; 3) радиоволны; 4) γ -волны.

Слайд 2

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

Слайд 3

Основные свойства электромагнитных волн

Электромагнитные волны излучаются колеблющимися зарядам.Наличие ускорения - главное условие излучения электромагнитных волн.

Слайд 4

Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.

Слайд 5

Электромагнитная волна является поперечной.

Периодические изменения электрического поля (вектора напряженности Е) порождают изменяющееся магнитное поле (вектор индукции В), которое в свою очередь порождает изменяющееся электрическое поле. Колебания векторов Е и В происходят во взаимно перпендикулярных плоскостях и перпендикулярно линии распространения волны (вектору скорости) и в любой точке совпадают по фазе. Силовые лини электрического и магнитного полей в электромагнитной волне являются замкнутыми. Такие поля называют вихревыми.

Слайд 6

Скорость электромагнитных волн в вакууме с=300000 км/с.Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.

Слайд 7

При переходе из одной среды в другую частота волны не изменяется.

Слайд 8

Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

Слайд 9

Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

Посмотреть все слайды

Слайд 1

Электромагнитные волны

Выполнила Жаркова С.В.

Слайд 2

Электромагнитная волна

Электромагнитная волна – непрерывная система переменных и магнитных полей распространяющихся в вакууме со скоростью света. Свойства эл. волн 1 колебания Е и В в любой точке совпадают по фазе. 2 расстояние между двумя ближайшими точками в которых колебания происходят в одинаковой фазе называется длинной волны. 3 наличие ускорения – главное условие излучения эл. волны.

Слайд 3

Экспериментальное обнаружение эл. волн

Для образования интенсивных электромагнитных волн необходимо создать электромагнитные колебания достаточно высокой частоты. Закрытый колебательный контур LС большие следовательно W0 маленькая и следовательно электромагнитная волна слабая.

Слайд 4

Открытый колебательный контур

К открытому контуру можно перейти от закрытого, если постепенно раздвигать пластины конденсатора, уменьшая их площадь и одновременно уменьшая число витков в катушке. В конце получится просто прямой провод. В открытом контуре заряды не сосредоточены на концах, а распределены по всему проводнику.

Слайд 5

Для возбуждения колебаний в контуре во времена Герца поступали так. Провод разрезали посредине так, чтобы оставался небольшой воздушный промежуток, называемый искровым. Обе части проводника заряжали до высокой разности потенциалов. Когда разность потенциалов превышала некоторое предельное значение, проскакивала искра, цепь замыкалась, и в открытом контуре возникали колебания. 2 причины затухания колебаний в открытом контуре: Вследствие наличия у контура активного сопротивления - Вибратор излучает электромагнитные волны и теряет при этом энергию.

Слайд 6

Попов Александр Степанович. (1859 – 1906)

Русский физик, изобретатель радио. Убежденный в возможности связи без проводов при помощи электромагнитных волн, Попов построил первый в мире радиоприемник, применив в его схеме чувствительный элемент – когерер. Во время опытов по радиосвязи с помощью приборов Попова было впервые обнаружено отражение радиоволн от кораблей.

Слайд 7

Изобретение радио А. С. Поповым. Надежный и чувствительный способ регистрации электромагнитных волн. В качестве детали, непосредственно «чувствующей» электромагнитные волны, А. С. Попов применил – когерер.

Слайд 8

Принципы радиосвязи.

Радиотелефонная связь – передача речи или музыки с помощью электромагнитных волн. В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания – детектирование

Слайд 9

Свойства электромагнитных волн.

1.Поглощение электромагнитных волн. Помещая различные диэлектрики, замечаем уменьшение громкости следовательно диэлектрики частично поглощают электромагнитные волны.

Слайд 10

2.Отражение электромагнитных волн. Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым. Волны не достигают приемника вследствие отражения.

Слайд 11

3.Преломление электромагнитных волн. Электромагнитные волны изменяют свое направление на границе диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из парафина. 4.Электромагнитные волны поперечные 5.Интерференция т.е сложение волн 6.Дифракция т.е огибание препятствий волнами

Слайд 12

Радиолокация

это обнаружение и точное определение местонахождения объектов с помощью радиоволн. Радиолокационная установка – радиолокатор, состоит из передающей и приёмной частей. Передатчик излучает волны кратковременными импульсами. Длительность каждого импульса составляет миллионные доли секунды, а промежуток между импульсами примерно в 1000 раз больше. Определение расcтояния R производится путем изменения общего времени t прохождения радиоволн до цели и обратно.

Слайд 13

Развитие средств связи

В настоящее время все шире применяются кабельные и радиорелейные лини, повышается уровень автоматизации связи. Успехи в области космической радиосвязи позволили создать новую систему связи, названную «Орбита». В этой системе используются ретрансляционные спутники связи. Созданы мощные и надежные системы, обеспечивающие телевизионным вещанием районы Сибири Дальнего Востока и позволяющие осуществить телефонно – телеграфную связь с отдаленными районами нашей страны. Совершенствуются и находят новое применение и такие сравнительно старые средства связи, как телеграф и фототелеграф. Телевидение охватывает почти все населенные пункты нашей страны.

«Электромагнитные волны и их свойства» - Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Облучение в больших дозах вызывает лучевую болезнь. Регистрируют тепловыми методами, фотоэлектрическими и фотографическими. Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

«Волны электромагнитные» - Применение: Радиосвязь, телевидение, радиолокация. Получаются с помощью колебательных контуров и макроскопических вибраторов. Природа электромагнитной волны. Радиоволны Инфракрасное Ультрафиолетовое Рентгеновское?-излучение. Применение: в медицине, в промышленности. Применение: В медицине, производстве (? -дефектоскопия).

«Трансформатор» - 5. От чего и как зависит ЭДС индукции в катушке из проводника. Когда трансформатор повышает электрическое напряжение? P1 =. 8. 2. 16. N1, N2 – число витков первичной и вторичной обмоток. 12. 18. Можно ли повышающий трансформатор сделать понижающим? Какой прибор нужно подключить между источником переменного тока и лампочкой?

«Электромагнитные колебания» - 80Гц. Эксперимент. 100в. 4Гн. Максимальное смещение тела от положения равновесия. Радиан в секунду (рад/ с). Этап подготовки учащихся к активному и созидательному усвоению материала. Электромагнитные колебания. Уравнения i=i(t)имеет вид: А. i= -0,05 sin500t Б. i= 500 sin500t В. i= 50 cos500t. Выполни задание!

«Шкала электромагнитных волн» - 1. Шкала электромагнитных излучений.

«Электромагнитное излучение» - Яйцо под излучением. Цели и задачи. Выводы и рекомендации. Цель: Исследовать электромагнитное излучение сотового телефона. Рекомендации: Снизить время общения по мобильному телефону. Исследование электромагнитного излучения сотового телефона. Для замеров я использовал оборудование MultiLab вер. 1.4.20.






















1 из 21

Презентация на тему: Электромагнитные волны 11 класс

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Электромагнитные волны Процесс распространения переменных магнитного и электрического полей и есть электромагнитная волна.Электромагнитные волны могут существовать и распространятся в вакууме.Условие возникновения электромагнитных волн.Для образования интенсивных электромагнитных волн необходимо создать электромагнитные колебания достаточно высокой частоты.Изменения электромагнитного поля происходят при изменении силы тока в проводнике, а сила тока в проводнике изменяется при изменении скорости движения электрических зарядов в нём, т.е. при движении зарядов с ускорением.Следовательно, электромагнитные волны должны возникать при ускоренном движении электромагнитных зарядов.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

№ слайда 5

Описание слайда:

Джеймс Клерк Максвелл Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями.

№ слайда 6

Описание слайда:

Теория Максвелла Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.: Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты. Максвелл высказал гипотезу о существовании и обратного процесса: Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

№ слайда 7

Описание слайда:

Выводы из теории Максвелла Из теории Максвелла вытекает ряд важных выводов: 1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны

№ слайда 8

Описание слайда:

№ слайда 9

Описание слайда:

Генрих Герц Электромагнитные волны были впервые экспериментально получены Герцем в1887г. В его опытах ускоренное движение электрических зарядов возбуждались в двух металлических стержнях с шарами на концах (вибратор Герца).Колебания электрических зарядов в вибраторе создают электромагнитную волну.Только колебания в вибраторе совершает не одна заряженная частица, а огромное число электронов, движущихся согласовано. В электромагнитной волне векторы Е и В перпендикулярны друг другу. Вектор Е лежит в плоскости, проходящей через вибратор, а вектор В перпендикулярен этой плоскости.Излучение волн происходит с максимальной интенсивностью в направлении, перпендикулярном оси вибратора. Вдоль оси излучения не происходят.В обычном колебательном контуре (его можно назвать закрытым), почти всё магнитное поле сосредоточено внутри катушки, а электрическое внутри конденсатора. Вдали от контура электромагнитного поля практически нет.Такой контур очень слабо излучает электромагнитные волны.

№ слайда 10

Описание слайда:

Вибратор Герца Для получения электромагнитных волн Герц использовал простое устройство, называемое сейчас вибратором Герца. Это устройство представляет собой открытый колебательный контур.К открытому колебательному контуру можно перейти от закрытого, если постепенно раздвигать пластины конденсатора, уменьшая их площадь и одновременно уменьшая число витков в катушке. В конце концов, получится прямой провод. Это и есть открытый колебательный контур. Емкость и индуктивность вибратора Герца малы. Поэтому частота колебаний весьма велика.В опытах Герца длинна волны составляла несколько десятков сантиметров.Вычислив собственную частоту электромагнитных колебаний вибратора, Герц смог определить скорость электромагнитной волны по формуле v’??. Она оказалась приближенно равна скорости света: с?300000 км/с. Опыт Герца блестяще подтвердили предсказания Максвелла.

№ слайда 11

Описание слайда:

Александр Степанович Попов В России одним из первых занялся изучением электромагнитных волн преподаватель офицерских курсов в Кронштадте Александр Степанович Попов.Попов Александр Степанович (1859-1905), русский физик и электротехник, изобретатель электрической связи без проводов (радиосвязи). В1895 году продемонстрировал изобретённый им первый в мире радиоприёмник. Весной1897 года достиг дальности радиосвязи 600м, летом1897 – 5 километров, в 1901 – около 150 километров.Создал (1895) прибор для регистрации грозовых разрядов(«грозоотметчик»). Получил золотую медаль наВсемирной выставке 1900 года в Париже.Возможность практического применения электромагнитных волн для установления связи без проводов была впервые продемонстрирована 7 мая 1895 года. Этот день считается днём рождения радио.

№ слайда 12

Описание слайда:

Радио Попова Приёмник Попова состоял из1 – антенны, 2 – когерера, 3 – электромагнитного реле, 4 – электрического звонка, 5 – источника постоянного тока. Электромагнитные волны вызывали вынужденные колебания тока и напряжения в антенне. Переменное напряжение с антенны подавалось на два электрода, которые были расположены в стеклянной трубке, заполненной металлическими опилками. Эта трубка и есть когерер.Последовательно с когерером включались реле и источник постоянного тока.Из - за плохих контактов между опилками сопротивление когерера обычно велико, поэтому электрический ток в цепи мал и реле звонка не замыкает. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, частицы опилок спекаются и его сопротивление уменьшается в 100 – 200 раз. Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок.Так регистрируется приём электромагнитной волны антенной.Удар молоточка звонка встряхивает опилки и возвращает его в исходное состояние, приёмник снова готов к регистрации электромагнитной волны антенной.В1899 году была обнаружена возможность приёма сигналов с помощью телефона. В начале 1900 года радиосвязь была успешно использована во время спасательных работ в Финском заливе. При участии Попова началось внедрение радиосвязи на флоте и в армии России.

№ слайда 13

Описание слайда:

Маркони За границей усовершенствованием подобных приборов занималась фирма, организованная итальянским учёным Маркони. Опыты, поставленные в широком масштабе, позволили осуществить радиотелеграфную передачу через атлантический океан.Важнейшим этапом развития радиосвязи было создание в 1913 году генератора незатухающих электромагнитных колебаний.Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов электромагнитных волн, стала возможной надёжная и высококачественная радиотелефонная связь – передача речи и музыки с помощью электромагнитных волн.При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы.Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояния речь и музыку с помощью электромагнитных волн.

№ слайда 14

Описание слайда:

Распространение радиоволн Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

№ слайда 15

Описание слайда:

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно. Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения. Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

№ слайда 16

Описание слайда:

Отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.

№ слайда 17

Описание слайда:

РадиоспутникиРадиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям. При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.

№ слайда 18

Описание слайда:

Тестовые задания Задания первого уровня.3.01. Что такое электромагнитная волна? А. Распространяющееся в пространстве переменное магнитное поле.Б. Распространяющееся в пространстве переменное электрическое поле. В. Распространяющееся в пространстве переменное электромагнитное поле. Г. Распространяющееся в пространстве магнитное поле. 3.02. Укажите выражение длины волны. А. λν; Б. 1/ν; В. v/ν; Г. 1/Т.3.03. Укажите неправильный ответ. Длина волны – это расстояние, …А. Которое проходит колеблющаяся точка за период;Б. На которое распространяются колебания за один период;В. Между ближайшими точками, колеблющимися в одинаковых фазах; 3.04. Укажите правильный ответ. В электромагнитной волне вектор Е … А. параллелен В; Б. антипараллелен В; В. Направлен перпендикулярно В. 3.05. Электромагнитное взаимодействие в вакууме распространяется со скоростью … (с = 3*108 м/с)А. v > c; Б. v = c; В. v< c.3.06. Электромагнитная волна представляет собой взаимосвязанные колебания … А. электронов;Б. вектора напряженности электрического поля Е и вектора индукции магнитного поля;В. протонов.3.07. Укажите ошибочный ответ. В электромагнитной волне … А. вектор Е колеблется, перпендикулярен В и v;Б. вектор В колеблется, перпендикулярен Е и v;В. вектор Е колеблется параллельно В и перпендикулярен v.3.08. Электрическое и магнитное поля электромагнитной волны являются …А. вихревыми и переменными; Б. потенциальными и стационарными; В. вихревыми и стационарными. 3.09. В электромагнитной волне колебательный процесс распространяется от точки к точке в результате …А. кулоновского взаимодействия соседних колеблющихся зарядов;Б. связей между вещественными носителями волны (например, сцепления);В. возникновения переменного электрического поля переменным магнитным полем и наоборот;Г. взаимодействия внутримолекулярных токов.

№ слайда 19

Описание слайда:

Тестовые задания 3.10. Электромагнитная волна является …А. продольной; Б. поперечной;В. в воздухе продольной, а в твердых телах поперечной;Г. в воздухе поперечной, а в твердых телах продольной. 3.11. Движутся четыре электрона:1 – равномерно и прямолинейно; 2 – равномерно по окружности;3 – прямолинейно и равноускоренно; 4 – совершает гармонические колебания вдоль прямой. Какие из них излучают электромагнитные волны?А. Все; Б. Только 2, 3, 4; В. Только 3, 4; Г. Только 1, 4.3.12. При каких условиях движущийся электрический заряд излучает электромагнитные волны?А. Только при гармонических колебаниях; Б. Только при движении по окружности;В. При любом движении с большой скоростью; Г. При любом движении с ускорением.3.13. При каких условиях движущийся электрический заряд не излучает электромагнитные волны?А. Такого движения нет;Б. При равномерном прямолинейном движении;В. При равномерном движении по окружности;Г. При любом движении с небольшой скоростью.3.14. Какой смысл имеет утверждение: электромагнитные волны – это поперечные волны?А. В электромагнитной волне вектор Е направлен поперек, а вектор В вдоль направления распространения волны;Б. В электромагнитной волне вектор В направлен поперек, а вектор Е вдоль направления распространения волны;В. В электромагнитной волне векторы Е и В направлены перпендикулярно направлению распространения электромагнитной волны;Г. Электромагнитная волна распространяется только поперек поверхности проводника. 3.15. Амплитудная модуляция заключается …А. в изменении (увеличении или уменьшении) частоты возникающих в генераторе незатухающих колебаний в такт с низкой (звуковой) частотой;Б. в изменении амплитуды генерируемых незатухающих колебаний в такт с низкой (звуковой) частотой;В. в выделении низкочастотных колебаний из модулированных колебаний высокой частоты;Г. в изменении (увеличении или уменьшении) фазы возникающих в генераторе незатухающих колебаний в такт с низкой (звуковой) частотой. 3.16. Детектирование (демодуляция) заключается … А. в изменении (увеличении или уменьшении) частоты возникающих в генераторе незатухающих колебаний в такт с низкой (звуковой) частотой;Б. в изменении амплитуды генерируемых незатухающих колебаний в такт с низкой (звуковой) частотой;В. в выделении низкочастотных колебаний из модулированных колебаний высокой частоты;Г. в изменении (увеличении или уменьшении) фазы возникающих в генераторе незатухающих колебаний в такт с низкой (звуковой) частотой. Г. Высокочастотные модулированные колебания преобразуются в ток звуковой частоты.

№ слайда 20

Описание слайда:

Тестовые задания 3.17. При приеме электромагнитных волн радиоприемником особым методом (детектирование, демодуляция) выделяют колебания …А. высокой частоты; Б. низкой частоты;В. любые колебания; Г. механические колебания звуковой частоты.3.18. Какие явления происходят во время радиоприема в воздухе около динамика радиоприемника?А. Возникают звуковые волны;Б. Возникают механические колебания звуковой частоты;В. Под действием радиоволн происходят электрические колебания высокой частоты, амплитуда которых изменяется со звуковой частотой;Г. Через обмотки электромагнитов протекает пульсирующий ток, при этом их сердечники в такт с пульсациями то сильнее, то слабее намагничиваются.3.19. Какую функцию выполняет антенна радиоприемника? А. Выделяет из электромагнитной волны модулирующий сигнал;Б. Усиливает сигнал одной избранной волны;В. Принимает все электромагнитные волны;Г. Принимает все электромагнитные волны и выделяет одну нужную.3.20. Какую функцию выполняет колебательный контур радиоприемника?А. Выделяет из электромагнитной волны модулирующий сигнал;Б. Выделяет из всех электромагнитных волн только совпадающие по частоте с собственными колебаниями;В. Принимает все электромагнитные волны;Г. Принимает все электромагнитные волны и выделяет одну нужную.3.21. Какие явления происходят во время радиоприема в антенне и в колебательном контуре радиоприемника?А. Возникают звуковые волны;Б. Возникают механические колебания звуковой частоты;В. Под действием радиоволн происходят электрические колебания высокой частоты, амплитуда которых изменяется со звуковой частотой;Г. Высокочастотные модулированные колебания преобразуются в ток звуковой частоты.3.22. Какие явления происходят во время радиоприема в цепи детектора радиоприемника?А. Возникают звуковые волны;Б. Возникают механические колебания звуковой частоты;В. Через обмотки электромагнитов протекает пульсирующий ток, при этом их сердечники в такт с пульсациями то сильнее, то слабее намагничиваются;3.23. Какие явления происходят во время радиоприема в динамике радиоприемника?А. Возникают механические колебания звуковой частоты;Б. Под действием радиоволн происходят электрические колебания высокой частоты, амплитуда которых изменяется со звуковой частотой;В. Через обмотки электромагнитов протекает пульсирующий ток, при этом их сердечники в такт с пульсациями то сильнее, то слабее намагничиваются;Г. Высокочастотные модулированные колебания преобразуются в ток звуковой частоты.

№ слайда 21

Описание слайда:

Общепит